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The stability of pipe flow 
Part 1. Asymptotic analysis for small wave-numbers 

By W. P. GRAEBEL 
Department of Engineering Mechanics, The University of Michigan, 

Ann Arbor, Michigan 

(Received 26 December 1969) 

The instability of Poiseuille flow in a pipe is considered for small disturbances. 
An asymptotic analysis is used which is similar to that found successful in plane 
Poiseuille flow. The disturbance is taken to travel in a spiral fashion, and com- 
parison of the radial velocity component with the transverse component in the 
plane case shows a high degree of similarity, particularly near the critical point 
where the disturbance and primary flow travel with the same speed. Instability 
is found for azimuthal wave-numbers of 2 or greater, although the corresponding 
minimum Reynolds numbers are too small to compare favourably with either 
experiments or the initial restrictions on the magnitude of the wave-number. 

1. Introduction 
Instability of the flow of fluids in circular pipes has hitherto not been found by 

analytic methods. Pretch (1941)) Pekeris (1948)) Sex1 & Spielberg (1958)) and 
Corcos & Sellars (1959) have all considered axially symmetric disturbances and 
found them to be stable. Spielberg & Timan (1960) have studied the case of dis- 
turbances independent of the direction of the primary flow and have concluded 
that such disturbances are also stable. Lessen, Sadler & Liu (1968) have con- 
sidered non-symmetric disturbances, but limited their attention to the case 
n = 1, where n is the angular wave-number. They found this case to be stable, 
and argued that ‘physical reasoning would indicate that the first azimuthal 
mode (n = 1) should have the least stable behaviour ’. The details of this physical 
reasoning are not presented, and the numerical technique they use for their 
investigation is claimed not to be suited for consideration of higher modes. 
Experimental results by Leite (1959) and Fox, Lessen & Bhat (1968) do indicate 
that pipe flow first becomes unstable due to non-axially symmetric disturbances, 
although measurements of n are not presented. 

The present series of papers re-examines the various aspects of the problem 
for non-symmetric disturbances. In this first part, the governing stability equa- 
tions are shown to bear a strong resemblance to those for plane Poiseuille flow, and 
an asymptotic technique similar to that used by Lin (1945) for plane Poiseuille 
flow is adapted to the present problem. The wave-numbers are assumed to be of 
order one. It is found that modes with values of n greater than unity are unstable, 
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and the results agree in some respects with experimental measurements, although 
the critical Reynolds numbers obtained are too low to satisfy the initial order 
estimates of the wave-numbers. 

We introduce disturbances of the form 

i r ,  
U' = -u(Y) E ,  

r 

r 

nr, 
v' = -v(y)E, 

1 
k W' = - W ( Y )  E ,  

where E = exp i(kz/r, - W, kctlr,, + no), 

R = W,T& = ~ v e ( B ? " O ) / Y ,  

and Y = 

Here ro is the pipe radius, and W, the primary flow speed along the centreline. 
The use of y rather than r leads to  some mathematical simplicity and is con- 
venient in pointing out the analogy between this problem and the stability of 
plane Poiseuille flow, but is not crucial in any way. The wave-numbers n (neces- 
sarily an integer) and k represent the wave-numbers measured in the azimuthal 
and axial directions respectively. The wave speed measured along the z axis is 
Wk times the real part of c. The imaginary part of c is proportional to the growth 
rate of the disturbance; our attention will be devoted primarily to neutral 
disturbances, where c is real. 

Substitution of the above forms into the Navier-Stokes equations and 
subsequent linearization for small disturbances yields the following governing 
equations for the disturbance: 

du 
dY 

2 - + v + w  = 0, 

U d u  I n2kR 
-q  = 0, (1.3) 

dW d u  
49---+4-- - + k 2 + i k R ( W - c )  w-2ikEu--++k2-+kRq= 0, (1.4) 

d2W dY2 dW dy [" Y 1 dY dY 
where W = 1 - y is the dimensionless primary velocity. We note that n ap-pears 
always as a square, and thus can be positive or negative without affecting the 
stability characteristics. If an analogous three-dimensional disturbance is used 
for plane Poiseuille flow, a striking similarity is found between the two sets of 
equations, particularly if the radial velocity component in the present case is 
compared with the transverse velocity component in the plane case. 
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An exact solution of equations (1.1) to (1.4) is, of course, not possible. However, 
since the Reynolds number can be expected to be large (albeit perhaps not as 
large as in the plane case), an asymptotic analysis similar to that used by 
Heisenberg and Lin for plane Poiseuille flow is attempted. 

The correct starting point for the analysis depends upon the range of values 
of c, k ,  and n to be considered. In  particular the value of c determines where order 
changes can occur in the solutions. These difficulties have been pointed out by 
Graebel (1966) and, more recently, by Eagles (1969). We adopt here the mixed 
approximation used by Heisenberg and Liii in plane flows, in an attempt to 
obtain a first estimate on the various parameters. The need for an approximation 
valid for large values of n and particularly k will be shown. 

Solutions will first be found valid everywhere except at the critical point 
ye = 1 - c, where the disturbances wave and the primary flow travel at the same 
speed. These solutions will be referred to as the outer solutions, and the corre- 
sponding region will be labelled the outer region. Solutions valid near ye will 
then be obtained; these are naturally referred to as inner solutions and the cor- 
responding region as the inner region. Composite solutions could be obtained by 
the addition of the inner and outer solutions, and subsequent removal of 
duplicated terms. 

2. The outer solution 
We first seek the inviscid solutions. The correct independent variable appro- 

priate to solutions which are neither exponentially large or small is y ;  all dis- 
turbance quantities will then be of the same order. Letting 

u U(Y>E) = c &,,(s)u,(y) 
m=O 

and likewise for the remaining dependent variables, the governing differential 
system is found to be 

2y-+ik2(W-c)E0 dqo = 0, 
dY 

n'ijo - iyk2( W - C )  = 0, 

._ dW 
p0-i(W-c);llj0-22u __ = 0, 

O dY 

dEO 

dY 
2-+;1;,+;12i0 = 0. 

This can be rearranged to give 
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where go is determined from 

d2G0 dCO 
y2 l+T (W-c)-+y(W-c)- ( T2) dy2 

y - 0 * 2 5 n 2 ( W - ~ )  

Thus Go has a logarithmic singularity a t  the point where W = c (i.e. where 
y = yc = 1 - c ) ,  plus poles (of order n in r )  a t  y = 0 and at y = - n2/IC2. Solving 
by the method of Frobenius, two solutions can be found near yc of the form 

Near y = 0, the non-singular solution has the form 

We write @,(y) and a2(y) as the solutions of (2.4) analytic everywhere except 
possibly yc, 0, or -n2/k2, and which behave like $,(y) and q52(y) near yc. Q3(y) 
is the combination of and Q2(y) which is proportional to r$3(y) near y := 0. 
Letting p be an arbitrary positive number less than n2/k2, then 

@3(Y) = [ # 3 ( P )  $%(P) - # 2 ( P )  N P ) 1  @l(Y)  + [ A ( P )  &(P) - # 3 ( P )  $;(P)l@,(Y). (2 .5 )  

Since for c >, 0.5, 6, and & will likely not converge a t  y = 1, Q1 and Q2 are the 
solutions to be matched to the inner solution, and their form has to be found by 
suitable expansions about y = 1. The details, being straightforward, are omitted. 
The condition that the solutions be finite a t  y = 0 will dictate that the necessary 
combination of a, and Q2 in the solution is, in fact, proportional to  which will 
give us the characteristic equation. 

The previous approach gives only those outer expansions which do not either 
grow or decay exponentially as EL function of some non-zero power of the Reynolds 
number. For the purpose of estimating numerical accuracy, it is desirable to have 
as well the outer expansions of those solutions which are of exponential character. 
These can easily be found by the WKB method. That is, a solution is sought in 
the form (where f is any of the dependent variables) 

the filE)s, g and h being determined by the differential system. The result is easily 
found to give h2 = ICR and g2 = ti( - 1 + y,/y). (This approach is also suited for 
finding the two outer expansions with first terms @, and Q2; the corresponding 
value for g is zero.) The velocities and pressure so determined are given to lowest 
order in table 1, matched to the inner solutions found later and presented in 
table 2 .  V, and W, are constants (functions of A)  which would be determined by 
higher-order matching. Two further outer expansions which grow exponenti:hlly 
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are easily found by using the negative square root for gin solutions 3 and 4; these 
would merge with the inner solution corresponding to the Hankel function of 
second kind. These are asymptotic expansions of those solutions singular at  the 
origin and hence not of interest in the present work. 

It is seen that solutions 2, 3 and 4 all have branch points a t  the critical point, 
and continuation through this point is not a priori obvious. The method used is 
essentially a comparison of the given system with one having constant coeffi- 
cients; it is not surprising that this breaks down when one of the coefficients 
changes sign. We next adopt an approach which compares the given system with 
one having linear coefficients, the comparison providing the needed continuation 
through the critical point. 

3. The inner solution 
To continue the outer solutions across the critical point, notice must be taken 

that the relative velocity between the primary flow and the disturbance is small 
in the neighbourhood of the critical point, and the order of the scaling will vary. 
As in plane Poiseuille flow, the correct order is e = (kR)-*. Then solutions 3 and 4 
will decay exponentially going from the critical point to the interior of the pipe, 
and grow exponentially going from the critical point to the wall. The wall effect 
is, as seen from the outer solutions, of order (Id)-*. If c = O(E) ,  then the two 
regions clearly overlap and the inner solution will dominate, since it represents 
a thicker region. For increasingly larger values of c (smaller ye), however, the 
region associated with the critical point moves from the wall and will eventually 
be distinct from the wall region. The appropriate variable for the wall region is 
7 = (y, - y)/e. When the two regions overlap, this is also the appropriate variable 
for the wall region, for a region with thickness of order e will dominate one with 
thickness of order €8. When, however, the regions become distinct, the appro- 
priate wall variable is (1 - y ) / eg ,  as shown in Graebel (1966). Such a choice, 
however, introduces the necessity of considering the cases of various orders of 
magnitude of c as being distinct and requiring separate analyses. In  the following, 
we will use the independent variable 7 for all 8, < yc < 1, 8, > O(e$), and then 
comment on the numerical accuracy which can be expected for this range of y,.. 

We let 

and 4 a*(r ,e)  = c ""+14*m(7). 
m=O 

The difference in ordering is dictated by continuity and the wish to have the 
equations coupled to the maximum degree, and is analogous to the ordering in 
boundary-layer theory. Substitution of these into the stability equations (1 .1)  to 
( 1.4) gives 
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n2q*o = 0, (3.3) 
d2v* 

4yc+ - ir/JV*, + - 
k2Yc 

(3.4) 

(3.5) 

4 0 =  0, (3.6) 4yc-----ipw*,+2izc*1+q*,-4~-----  

(3.7) 

(3.8) 

n2q*, + Tn2q*, - d2v*, dv* 
47I7-8-O= 0 d2v*, 

dT k Yc k2Yc dT ' 
4yc7 -iyv*,+--, __ 

d2W", 
4 y c - 7 - i 7 w  * 0 +2iu*o+q*o = 0, 

dT 
d2W*, dw* 

d7 
d2W*l 

dV2 
du*, 

dT 

dT 

2-- v*o-w*o = 0, 

1 = 0, 2 1  -2)*1 - w* au* 

for the first two orders of E .  These show that q*o is a constant. I ts  magnitude is 
arbitrary, for since the problem is homogeneous, the solution is indeterminat'e to 
a scale factor: it is convenient to choose 

q*o = 2ik2vo( 1 - P)/ (k2  + nz/yc), 

where To = (Yc- l)/s, p = x ( T o ) / r o x ' ( T o ) ~  

and 

To ensure correct behaviour to match to the outer solution (i.e. exponential 
decay as 7 --f oo), it is necessary that - 7 ~ / 6  < arg 7 < n/6. If we restrict attention 
first t o  the case where c is very small, the solutions satisfying the boundary 
conditions a t  the wall are found to be 

U*O(T) = T + To(i" - 1) - X ( T ) / X ' ( T O ) ,  (3.9) 

v*o(T) = ( i / 4 Y C ) +  27on2(1 - W(n2 + k2YJ *{G(T) - X" (T )  G(To)/X"(To)), (3.10) 

W"O(7) = -%(?I) + 2 - 2x'(s)ix'(so)t 

G(7) = iIm ds exp - i[q(i/4yc)+s + s3 /3] ,  

(3.11) 

where 
0 
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A,, B, are constants chosen to satisfy the conditions u*,(q0) = u*;(qo) = 0. The 
quantity q*, is again arbitrary for the same reason as was q*o. It can 
conveniently be chosen so that the coefficient multiplying the term linear in 
7 in the asymptotic expansion of U, as n -+ + 03 is zero. 

For the purpose of matching to the outer expansion, it is necessary to know 
the behaviour of u * ( ~ )  as 7 + + 00. The x’s all decay exponentially, and the only 
quantity requiring particular attention is the function G. We note that, by simple 
integration by parts, 

where a = (i/4yc)4. For the arguments in question, 

and 

The combination of outer solutions which match this is 

From the above asymptotic forms, it is clear that the function x has the steep 
behaviour which one usually associates with the wall layer, and the function G is 
taking care of the singularity which the inviscid solution exhibits at the critical 
point. The four non-exponentially growing independent solutions in the inner 
region are presented to the first two orders in table 2 .  (The axial component of 
velocity is found from w = - v + 2 duld7.) If one takes the asymptotic form of x 
and writes it in terms of y, the solutions of the form (1 - y) (kR)* presented in 
Graebel (1966) immediately appear. Solution 2 is appropriate to the region near 
the critical point, and must be the continuation of the inviscid solution appro- 
priate to the critical region. Similarly solution 1 is the continuation of q51, and is 
appropriate to all steep regions. These results are summarized in tables 1 and 2 .  

While the characteristic equation could be obtained from equation (3.15) by 
imposing the finiteness condition at the origin, the limitation of small c is too 
restrictive to provide numerical accuracy. Even in plane Poiseuille flow one has 
to go to one higher order of approximation in that part of the inner solution cor- 
responding to the constant in q52, since this will bring in the needed imaginary 
term to keep the inviscid effects from being purely real. To do this, we recognize 
that the first two terms in equation (3.9) are inner expansions of (D, and Q2. 

Introducing these in place of the linear terms gives 

u*o = K R Y C  - 1) ( 1 )  + @ 2 ( 1 ) 1  @,(!I) 

- [@1(1) + a h  - 1) (I)]* @2(y)W - x(v)/x’(ro)3 
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with A the Jacobian of CDl and CD2 evaluated at  y = 1. This solution must be 
proportional to Q3 near the origin to satisfy conditions of finiteness there. Com- 
paring the above with the earlier expression for CD3 in terms of CD, and (D2 wves 
the characteristic equation 

[F(yc- 1) (D;(l)+CD.,(1)1/[~>,(1)+F(yc- 1)  W ) I  = x, 
= [ $UP)  SUP) - $ 2 ( P )  $ w 3 ) I / [ M P )  &(P) - A ( P )  &(P)1. where 

It is convenient to rewrite this in the form 

(1 -wl = 1/(1+ [QDZP) -i3@1P)1/(yc- 1) [Q;W-i3@;(1)1}, (3.16) 

where now the Reynolds number appears only on the left-hand side of the 
equation. 

U V W 4 
en2 

1 -5 91 eqn. (2.1) eqn. (2.2) eqn. (2.3) 

eqn. (2.1) eqn. (2.2) eqn. (2.3) 

x In [y( 1 + 4ig2 + 4g&} 

TABLE 1. Outer expansions of four independent solutions correct to one term. 

h = (kR)*, 9 = [$i(-l+yc/y)]6, 8 = y c ( 3 / n i ) a e x p [ ~ S g d y - - ~ ~ ~ ]  

4 

TABLE 2. Inner expansions of four independent solutions given in table 1, correct to 
two terms. The axial velocity component is found from w = - v + 2du/dr] 
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4. Results and discussion 
The calculation of the eigenvalues based on (3.16) is straightforward if some- 

what tedious. The various inviscid solutions are easily computed by developing 
them in Taylor series in y, y -  yc, or y -  1, depending on the region of interest, 
and then using the recursion relations so obtained to evaluate them as functions 
of iE, n, and yc. It is simple to show that the imaginary part of the right-hand side 
of (3.16) is always positive. Tables of the left-hand side of (3.16) can be found in 
Lin (1945) or, more detailed, in Miles (1960). The left-hand side of (3.16) is solely 
a function of the parameter 6 = (1 - yc) (kR/4yc)9. Upon plotting the real and 
imaginary part of each side of the characteristic equation as the ordinate and 
abscissa, the intersection of the two curves gives the required eigenvalues. 

The computations were carried out for integer values of n between 1 and 10, 
and for 0 - l n  6 k 6 2.5n. Slowness of convergence of the various series dictated 
the upper limit, and there seemed no practical reason to go below the lower limit, 
since the solutions changed very slowly with k below this range. The wave speed c 
was varied between 0.1 and 0.9. For n = 1, no eigenvalues were found, thus 
confirming the stability found by Lessen, Saddler & Liu (1968). For n 2, the 
results are shown in figure 1. (Values of n greater than 5 are omitted from the 
various figures since they give values of the critical Reynolds number which are 
higher at  a given k than those found for lower n’s.) It was found in all cases that 
the only intersection of the curves occurred when the real and imaginary parts of 
each side of the equation were essentially 2.3 and 0, respectively; 5 then is 
approximately 2-3 also. The dashed lines connect points having the same wave 
speeds. It is seen that n = 2 yields the lowest critical Reynolds number, although 
it was not possible to determine the actual minimum value, if in fact such a 
minimum exists. The constancy of 5 occurs because when the values of n, k2, and 
yc are such that the real part of the right-hand side of equation (3.16) lies between 
1 and 2.3, the corresponding imaginary part is to all intents and purposes, zero. 

The values of the minimum Reynolds number are patently too low when 
compared with any experimental results. To determine the sensitivity of the 
present answers to the parameter c and the order of the approximations, two 
simple alternate computations were tried. In  the first, the expression for 5 was 
replaced by (1  - (1 - c)B) (2kR( 1 - c)J)&. This is the result found if the co-ordinate r 
rather than y = r2 were used. The result is shown in figure 2. Here all curves 
including n = 2 show minimum values of the critical Reynolds number, and the 
corresponding minimum is higher than that given in figure 1. (The two values 
of 6 can be shown to agree for very small c. by suitable use of the binomial 
theorem.) 

In  figure 3, the expression used for 5 was (1 - y,) ($kR)S, the rationale here 
being to attempt to evaluate to a limited degree the influence of c on the approxi- 
mation to the coefficients in the governing equation. This value of 5 would be 
obtained if in approximating (in the inner region) the coefficients of the highest 
derivative in equation (1.3) and (1.4), one used 4 instead of 4yc, i.e. if y were 
expanded about 1 rather than yc. The results are qualitatively much the same 
as obtained from the approximation used in figure 2. The minimum critical 
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Reynolds number is higher than given by figure 1, and even highor than given 
by figure 2 for all n except n = 2. 

While these results do not in any way give a minimum critical Reynolds 
number which agrees with experimental results, there are reassuring features 

1 2 3 4 5 6 

RB 

FIGURE 1. Neutral stability curves based on 5 = (1 -yc) (kR/4y,)f. 

2 3 4 5 6 7 

R+ 

FIGURE 2. Neutral stability curves based on 5 = (1 - (1 - c)*) ( 2 k R (  1 - c)*)*. 
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which indicate that a linearized theory may be valid. Fox, Lessen & Bhat (1968) 
indicate a minimum critical Reynolds number of approximately R* = 13, cor- 
responding to c = 0.6 arid k = 9. The present results are giving higher values for 
both c and k than are found in the plane Poiseuille case. As was pointed out 
initially, the present results are only valid for small n and k ;  we are encountering 
flow instability in our approximation only where k particularly is of the same 
order as the Reynolds number. Eagles (1969) has pointed out that the use of the 
present type of approximation will likely predict the correct trend, but also can 
be expected to lead to inaccuracies. The reason that Lin’s results are as accurate 
as they are is precisely because for plane Poiseuille flow, the maximum values 

I 

k 

9 -  

8 -  

1 -  

- 
- 
- 
- 
- 
- 
- 

1 -  

I I I I 
2 3 4 5 6 I 

RB 

FIGURE 3. Neutral stability curves based on g = (1 - y,) (bR/4)f.  

of c and k are much smaller than found in the present case (0.3 and 1.2 respec- 
tively). Because of the particular way in which n and k appear in the inviscid 
equation (2.4)) the inviscid solutions, and in particular the real parts, grow 
rapidly as n/k becomes small. Thus the effect of these large wave-numbers is to  
influence all parts of the approximation in substantial ways. 

How can the present calculations be improved in accuracy? It is unlikely that 
carrying the present approximation to one or two higher order terms will be 
sufficient. In  the inner region, the terms k2 + n2/yc which accompany the inertia 
terms in equations (1.2)-(1.4) will enter at the third approximation and will 
contribute terms which are of the order of ~ ~ ( k ~  + n2/yc) compared with the first- 
order terms. Por values of n, k, and R of the magnitude found in the present 
approximation, these terms would be nearly of order one, and the convergence 
would appear to be slow, although no attempt was made to carry out such 
computations. Use of the outer expansion, or of the composite expansion 

19 F L M  43 
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suggested by Eagles (1969), do not on the surface appear fruitful for the same 
reason. It seems preferable, and perhaps necessary, to include such terms in the 
lowest-order approximation to  gain the greatest accuracy with the fewest 
number of terms. 

This research was partially sponsored by the Fluid Dynamics Branch of the 
Office of Naval Research under contract Nonr-1224(49) with The University of 
Michiga'n. 
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